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On alternating sums of squares of quantum integers
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The classical formula Z?:o (—=1)1i% = (- 1)"_122201' is quantized.

The classical formula in the Abstract can be quantized thusly:
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To prove (1) we set z, = ¢" — ¢, notice that (1) is true for n = 0,1, and then proceed by
induction. The inductive step n — n + 2 amounts to:
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Then (3) becomes
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The LHS of (4) returns:
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The RHS of (4) yiselds:
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which is the same as (5). We used in the Proof the obvious relation
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