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Three new classical formulae involving arithmetic progressions are quantized. 

 
 
 
 The following classical sum formulae are quantized: 
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 These classical formulae all have the property that their left sides are divisible by r, a 
rare occurrence. The purpose of this note is to quantize each of these 3 formulae. 
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for the sum of a quantum arithmetic progression. 
 
Proof.  We will use the formula (Kupershmidt 2009): 
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Thus, the left side of (7), having rk terms, and the average value of the term 
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sums to 
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so the right side of (7) is: 
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which is the same as (10), because, as is well known, 
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Proof.  For the left side, with rk terms, , and the average term is 2d =
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So, the left side is: 

  , (14) [ ] [2 2]qrk a rk+ +

For the right side of (13), , we have k terms, with the average term being 2d =

{ } { }1 1
[2( ) 2] 2( ) 2 4 2 4

2 2

2 2.

r a r rk a r a rk

a rk

é ù+ - + + + - + = + +ë û

= + +

 

which is the same as the left side of (14).    
 
Remark 15. Formula (7) and (13) are particular cases ( 0,1b =  following 4-parameter 
general formula: 

) of the
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Indeed, the left side of (16) has rk terms, , and the average term is: 2d =
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Thus, the right side is 
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which is the same as the left side (17). 
 The third equality (3), results for ,  in formula 0a = 1q = (16). 
 Notice that by setting  and  in 2r = 0a = (7), we have, for , 1k =
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By setting , , , and  in 2r = 3k = 1b = 10a = (16), we have 
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or, by reversing the values of r and k in (16), 
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