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A product of two quantum integers
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The product of two generalized quantum integers is a sum of simple quantum
integers.

Quantum integers are generally defined in one of two ways. The first is (see, e.g., Fraenkel
1955):
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In the present work, the second quantization
T _ —T
z - [afy = T —— (1)
-1
qa—4q
will be used, so that

and

2y =a+q", By =¢+1+¢7, ..
[n]m — q'ﬂ,fl + qnf?) _.I_ ‘e + qi(nil)’ n e ZZQ .

The quantum integers of the form
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are called simple, and those of the form
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generalized.
Theorem 4. For any m,n € Z, a,b € Z,,
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Proof. Set % =r,and let ¢ = @. Then (5) becomes
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The left side of (6) is, with z, = Q* —Q*, keZ,and N = nr:
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while, for the right, we get:
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The sums on the right can be replaced by the first quantization:
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which is (7). H

Note that the right side of formula (5), as it stands, is not a quantum integer. This can be
remedied as follows: Letting m = 1 in (6), we get:
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and letting » =1 in (6), we get:
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Thus, the product of two generalized quantum integers can be expressed by first replacing
both factors on the left side of (5) with a series using the right side of (8), giving a sum of
products of simple quantum integers. Each product in the sum can then be replaced, using
(9), with a sum of simple quantum integers. Therefore, generalized quantum integers form a
ring, a result proved previously by Kupershmidt (2009) indirectly.

Remark 10. Formula (5) is true when m,a,b € Q or Z ; however, these numbers need not be
integers.
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